ON THE Lp BOUNDEDNESS OF WAVE OPERATORS FOR TWO-DIMENSIONAL SCHRÖDINGER OPERATORS WITH THRESHOLD OBSTRUCTIONS
نویسندگان
چکیده
Let H = −∆ + V be a Schrödinger operator on L(R) with real-valued potential V , and let H0 = −∆. If V has sufficient pointwise decay, the wave operators W± = s − limt→±∞ eitHe−itH0 are known to be bounded on L(R) for all 1 < p < ∞ if zero is not an eigenvalue or resonance. We show that if there is an s-wave resonance or an eigenvalue only at zero, then the wave operators are bounded on L(R) for 1 < p < ∞. This result stands in contrast to results in higher dimensions, where the presence of zero energy obstructions is known to shrink the range of valid exponents p.
منابع مشابه
A remark on L-boundedness of wave operators for two dimensional Schrödinger operators
Let H = −∆ + V be a two dimensional Schrödinger operator with a real potential V (x) satisfying the decay condition |V (x)| ≤ C〈x〉−δ, δ > 6. Let H0 = −∆. We show that the wave operators s-limt→±∞ eitHe−itH0 are bounded in Lp(R2) under the condition that H has no zero resonances or bound states. In this paper thecondition ∫ R2 V (x)dx 6= 0, imposed in a previous paper (K. Yajima, Commun. Math. P...
متن کاملWave Operator Bounds for 1-dimensional Schrödinger Operators with Singular Potentials and Applications
Boundedness of wave operators for Schrödinger operators in one space dimension for a class of singular potentials, admitting finitely many Dirac delta distributions, is proved. Applications are presented to, for example, dispersive estimates and commutator bounds.
متن کاملThe L- Continuity of the Wave Operator for the Three Dimensional Schrödinger Operator
We consider a three dimensional perturbed Schrödinger operator H = −∆ + V (x), and the associated wave operators, that are defined as the strong L-limits limt→±∞ ee0 . We prove the boundedness of W± as operators onto L, for all p ∈ [1,∞], provided the potential V is small in the Rollnik and Kato norms. We use this result to obtain sharp dispersive estimates for Schrödinger, wave and Klein-Gordo...
متن کاملUniform Boundedness Principle for operators on hypervector spaces
The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017